
23-October-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Assignment #2 due

● Finish lighting
• Color materials

● Texturing, part 1
• Loading textures
• Specifying texture coordinates

● Start assignment #3

23-October-2007 © Copyright Ian D. Romanick 2007

Materials
Since glMaterial cannot be called inside

begin / end, that interface is limited to one
material per object.
● Could split object into multiple begin / end pairs, but

it is much more efficient to do a single block of
drawing.

Obvious interface deficiency. What to do?

23-October-2007 © Copyright Ian D. Romanick 2007

Materials
Since glMaterial cannot be called inside

begin / end, that interface is limited to one
material per object.
● Could split object into multiple begin / end pairs, but

it is much more efficient to do a single block of
drawing.

Obvious interface deficiency. What to do?
● Enter “color material”.

● Allows use of glColor calls to set certain material
properties.

23-October-2007 © Copyright Ian D. Romanick 2007

Color Material
Enable GL_COLOR_MATERIAL.

Set the per-face mode with glColorMaterial
● Can set different mode for front and back faces.

● Mode can be any of GL_EMISSION, GL_AMBIENT,
GL_DIFFUSE, GL_SPECULAR, or
GL_AMBIENT_AND_DIFFUSE
• Default mode is GL_AMBIENT_AND_DIFFUSE.

Modify the selected property with glColor
calls inside or outside begin / end.

23-October-2007 © Copyright Ian D. Romanick 2007

Drawing Spot Lights
Even more important that point lights!

● Not only does it have a position, but it also has a
direction.

How would you represent it?

23-October-2007 © Copyright Ian D. Romanick 2007

Drawing Spot Lights
Even more important that point lights!

● Not only does it have a position, but it also has a
direction.

How would you represent it?
● Draw a point for the light, as before.

● Draw a line from the point in the direction the light
faces.

● Alternately, can draw a wire-frame cone for the spot
cone, but this is usually overkill.

23-October-2007 © Copyright Ian D. Romanick 2007

What is texture mapping?
Application of an image onto a surface.

● Many different kinds of images can be used as
textures.

● Texture mapping has been the fundamental
drawing operation for at least the last 10 years.

 Images can come from a variety of sources.
● Hand-drawn

● Photos

● Procedurally generated

● Etc.

23-October-2007 © Copyright Ian D. Romanick 2007

Kinds of Images
2D textures are by far the most common

1D textures have existed since OpenGL 1.0,
but are not commonly used.

3D (aka volumetric) textures have been
available since OpenGL 1.2.
● Early hardware (e.g., Radeon 8500, Geforce) had

limited support.

Cubemap (aka cubic) textures have been
available since OpenGL 1.3
● Very useful!

23-October-2007 © Copyright Ian D. Romanick 2007

Texture Coordinates
Each vertex has associated texture coordinates

● Like colors or normals

● Coordinates have between 1 and 4 “dimensions”

● Coordinates can be specified or generated by
OpenGL

Coordinates are interpolated along polygon
edges, then across each scan line
● Each fragment's coordinate is used to lookup a

texel.

● This interpolation is what we would want for
normals for Phong shading...

23-October-2007 © Copyright Ian D. Romanick 2007

Texture Coordinates (cont.)
Coordinates range

from 0 to 1 in each
dimension.
● Dimensions are

named s, t, r, and q.

The origin in OpenGL
is always the lower
left corner!

23-October-2007 © Copyright Ian D. Romanick 2007

Texel Fetch
Each fragment's texture coordinate selects a

texel...but there's a problem here!

23-October-2007 © Copyright Ian D. Romanick 2007

Texel Fetch
Each fragment's texture coordinate selects a

texel...but there's a problem here!
● As the polygon gets smaller, each fragment

represents more area in the texture.

● How can we select
just one texel for the
fragment when the
fragment covers
multiple texels?

23-October-2007 © Copyright Ian D. Romanick 2007

Texel Fetch
Could read all texels covered by the fragment

and average them together.

What's the problem with this?

23-October-2007 © Copyright Ian D. Romanick 2007

Texel Fetch
Could read all texels covered by the fragment

and average them together.

What's the problem with this?
● If the polygon is small

enough, the whole
texture is covered by
one texel.

● Reading the whole
texture for one
fragment would
destroy performance.

23-October-2007 © Copyright Ian D. Romanick 2007

Linear and Bilinear Filtering
We can approximate some of this much

cheaper.
● The texture coordinate selects somewhere between

the texels.

● Linear filtering selects the two nearest texels and
calculates the weighted average.

● Bilinear filtering selects the four nearest texels and
calculates the weighted average.

● Still not very good.

23-October-2007 © Copyright Ian D. Romanick 2007

Multum in pavro
Latin for “many things in one place.”

Create multiple pre-filtered (averaged), down-
sampled version of the “base” texture.
● Down-sampled textures are called mipmaps.

● The collection of mipmaps for a particular base
texture is called its mipmap stack.

As the texel area represented by a single
fragment increases, use a smaller mipmap.
● In smaller mipmaps, each texel represents more

area from the base map.

23-October-2007 © Copyright Ian D. Romanick 2007

Mipmap Example

23-October-2007 © Copyright Ian D. Romanick 2007

Using Mipmaps
Combine mipmapping ideas and linear / bilinear

filtering ideas...
● Filter the 4 nearest texels from the nearest mipmap

● Filter 1 texel from each of the 2 nearest mipmaps

● Filter the 4 nearest texels from each of the 2
nearest mipmaps.
• This is called trilinear filtering.

23-October-2007 © Copyright Ian D. Romanick 2007

Filtering Modes
OpenGL has a name for each of these:

● GL_NEAREST
● GL_LINEAR
● GL_NEAREST_MIPMAP_NEAREST
● GL_NEAREST_MIPMAP_LINEAR
● GL_LINEAR_MIPMAP_NEAREST
● GL_LINEAR_MIPMAP_LINEAR

We'll discuss how to select the filtering mode in
a bit...

23-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Texture_filtering

http://en.wikipedia.org/wiki/Mipmap

http://www.opengl.org/resources/code/samples/redbook/mipmap.c

http://www.graphicshardware.org/previous/www_1998/presentations/kirk/sld022.htm

http://www.sgi.com/products/software/performer/brew/anisotropic.html

http://en.wikipedia.org/wiki/Texture_filtering
http://en.wikipedia.org/wiki/Mipmap
http://www.opengl.org/resources/code/samples/redbook/mipmap.c
http://www.graphicshardware.org/previous/www_1998/presentations/kirk/sld022.htm
http://www.sgi.com/products/software/performer/brew/anisotropic.html

23-October-2007 © Copyright Ian D. Romanick 2007

Creating Textures
Textures are identified by a unique texture

object ID.
● IDs can be generated by glGenTextures.

• glGenTextures does not allocate memory for the
texture.

● IDs can also be “pulled from thin air”.
• This is the push model in action!
• An old trick is to use textures for letters in a font. Name

the textures after the letters... (GLint)'a',
(GLint)'b', etc.

• In simple programs with few textures hard-code the
names to 1, 2, 3, etc.

23-October-2007 © Copyright Ian D. Romanick 2007

Creating Textures (cont.)
Make a texture active with glBindTexture.

● By default texture ID 0 is bound.

● glBindTexture does not allocate memory for the
texture.

A texture ID is bound to a texture target.
● The target determines what kind of texture (e.g.,

1D, 2D, etc.) it is.

● Each ID can only be associated with one target.

23-October-2007 © Copyright Ian D. Romanick 2007

Creating Textures (cont.)
Texture data is uploaded glTexImage[123]D

● Since the size of the image is set by these
functions, this is when the memory gets allocated.

● Specified target must match dimensionality of the
function. (e.g., GL_TEXTURE_2D cannot be passed
to glTexImage[123]D).

● Specified target must match target of bound texture
ID.

● Width and height must be powers of 2.
• Restriction relaxed in OpenGL 2.1 or with
GL_ARB_texture_non_power_of_two.

23-October-2007 © Copyright Ian D. Romanick 2007

Texture Creation Example
glBindTexture(GL_TEXTURE_2D, id);

glTexImage2D(GL_TEXTURE_2D, level, GL_RGB,
 width, height,
 GL_RGB, GL_UNSIGNED_BYTE,
 pointer_to_image_data);

23-October-2007 © Copyright Ian D. Romanick 2007

Updating Texture Data
glTexImage[123]D are expensive because

they allocate memory.

To update a texture, use
glTexSubImage[123]D instead.

glBindTexture(GL_TEXTURE_2D, id);
glTexSubImage2D(GL_TEXTURE_2D, level,
 x_offset, y_offset,
 width, height,
 GL_RGB, GL_UNSIGNED_BYTE,
 pointer_to_image_data);

23-October-2007 © Copyright Ian D. Romanick 2007

Texture Completeness
A texture must be “complete” or it will be

disabled.
● If a mipmap filter mode is selected, the texture must

be mipmap complete, meaning that ever mipmap
down to 1x1 must be set.

● Cubic textures must be cubemap complete,
meaning that all six sides must be set and, if
necessary, be mipmap complete.
• Cubic textures also must be square, and all sides must

have the same dimensions.

Not being complete is the cause of 99% of all
newbie texturing problems.

23-October-2007 © Copyright Ian D. Romanick 2007

Texture Parameters
Set texture object parameters with
glTexParameter[if] or
glTexParameter[if]v
● Just like lights!

● Set filter mode, coordinate wrap mode, border
color, and other parameters this way.

glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

23-October-2007 © Copyright Ian D. Romanick 2007

Texture Wrapping
Texture images only have range [0, 1].

● What happens if the requested texel coordinate is
outside that range?

23-October-2007 © Copyright Ian D. Romanick 2007

Texture Wrapping
Texture images only have range [0, 1].

● What happens if the requested texel coordinate is
outside that range?

● It depends on the wrap mode!

Wrap mode is set independently for each
dimension.

8 possible modes, not all implementations
support all 8.
● OpenGL 1.5 and 2.0 only require 5.

● Remaining 3 were rejected for inclusion in 2.0.

23-October-2007 © Copyright Ian D. Romanick 2007

Wrap Mode Demo

23-October-2007 © Copyright Ian D. Romanick 2007

Next week...
More texture mapping:

● Texture combiners (part 1 of 3)

● Texture coordinate generation

● Environment mapping

Assignment #3 due.

Assignment #4 assigned.

Maybe another quiz? >:)

23-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

