
23-October-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Assignment #2 due

● Finish lighting
• Color materials

● Texturing, part 1
• Loading textures
• Specifying texture coordinates

● Start assignment #3



23-October-2007 © Copyright Ian D. Romanick 2007

Materials
Since glMaterial cannot be called inside 

begin / end, that interface is limited to one 
material per object.
● Could split object into multiple begin / end pairs, but 

it is much more efficient to do a single block of 
drawing.

Obvious interface deficiency.  What to do?



23-October-2007 © Copyright Ian D. Romanick 2007

Materials
Since glMaterial cannot be called inside 

begin / end, that interface is limited to one 
material per object.
● Could split object into multiple begin / end pairs, but 

it is much more efficient to do a single block of 
drawing.

Obvious interface deficiency.  What to do?
● Enter “color material”.

● Allows use of glColor calls to set certain material 
properties.



23-October-2007 © Copyright Ian D. Romanick 2007

Color Material
Enable GL_COLOR_MATERIAL.

Set the per-face mode with glColorMaterial
● Can set different mode for front and back faces.

● Mode can be any of GL_EMISSION, GL_AMBIENT, 
GL_DIFFUSE, GL_SPECULAR, or 
GL_AMBIENT_AND_DIFFUSE
• Default mode is GL_AMBIENT_AND_DIFFUSE.

Modify the selected property with glColor 
calls inside or outside begin / end.



23-October-2007 © Copyright Ian D. Romanick 2007

Drawing Spot Lights
Even more important that point lights!

● Not only does it have a position, but it also has a 
direction.

How would you represent it?



23-October-2007 © Copyright Ian D. Romanick 2007

Drawing Spot Lights
Even more important that point lights!

● Not only does it have a position, but it also has a 
direction.

How would you represent it?
● Draw a point for the light, as before.

● Draw a line from the point in the direction the light 
faces.

● Alternately, can draw a wire-frame cone for the spot 
cone, but this is usually overkill.



23-October-2007 © Copyright Ian D. Romanick 2007

What is texture mapping?
Application of an image onto a surface.

● Many different kinds of images can be used as 
textures.

● Texture mapping has been the fundamental 
drawing operation for at least the last 10 years.

 Images can come from a variety of sources.
● Hand-drawn

● Photos

● Procedurally generated

● Etc.



23-October-2007 © Copyright Ian D. Romanick 2007

Kinds of Images
2D textures are by far the most common

1D textures have existed since OpenGL 1.0, 
but are not commonly used.

3D (aka volumetric) textures have been 
available since OpenGL 1.2.
● Early hardware (e.g., Radeon 8500, Geforce) had 

limited support.

Cubemap (aka cubic) textures have been 
available since OpenGL 1.3
● Very useful!



23-October-2007 © Copyright Ian D. Romanick 2007

Texture Coordinates
Each vertex has associated texture coordinates

● Like colors or normals

● Coordinates have between 1 and 4 “dimensions”

● Coordinates can be specified or generated by 
OpenGL

Coordinates are interpolated along polygon 
edges, then across each scan line
● Each fragment's coordinate is used to lookup a 

texel.

● This interpolation is what we would want for 
normals for Phong shading...



23-October-2007 © Copyright Ian D. Romanick 2007

Texture Coordinates (cont.)
Coordinates range 

from 0 to 1 in each 
dimension.
● Dimensions are 

named s, t, r, and q.

The origin in OpenGL 
is always the lower 
left corner!



23-October-2007 © Copyright Ian D. Romanick 2007

Texel Fetch
Each fragment's texture coordinate selects a 

texel...but there's a problem here!



23-October-2007 © Copyright Ian D. Romanick 2007

Texel Fetch
Each fragment's texture coordinate selects a 

texel...but there's a problem here!
● As the polygon gets smaller, each fragment 

represents more area in the texture.

● How can we select 
just one texel for the 
fragment when the 
fragment covers 
multiple texels?



23-October-2007 © Copyright Ian D. Romanick 2007

Texel Fetch
Could read all texels covered by the fragment 

and average them together.

What's the problem with this?



23-October-2007 © Copyright Ian D. Romanick 2007

Texel Fetch
Could read all texels covered by the fragment 

and average them together.

What's the problem with this?
● If the polygon is small 

enough, the whole 
texture is covered by 
one texel.

● Reading the whole 
texture for one 
fragment would 
destroy performance.



23-October-2007 © Copyright Ian D. Romanick 2007

Linear and Bilinear Filtering
We can approximate some of this much 

cheaper.
● The texture coordinate selects somewhere between 

the texels.

● Linear filtering selects the two nearest texels and 
calculates the weighted average.

● Bilinear filtering selects the four nearest texels and 
calculates the weighted average.

● Still not very good.



23-October-2007 © Copyright Ian D. Romanick 2007

Multum in pavro
Latin for “many things in one place.”

Create multiple pre-filtered (averaged), down-
sampled version of the “base” texture.
● Down-sampled textures are called mipmaps.

● The collection of mipmaps for a particular base 
texture is called its mipmap stack.

As the texel area represented by a single 
fragment increases, use a smaller mipmap.
● In smaller mipmaps, each texel represents more 

area from the base map.



23-October-2007 © Copyright Ian D. Romanick 2007

Mipmap Example



23-October-2007 © Copyright Ian D. Romanick 2007

Using Mipmaps
Combine mipmapping ideas and linear / bilinear 

filtering ideas...
● Filter the 4 nearest texels from the nearest mipmap

● Filter 1 texel from each of the 2 nearest mipmaps

● Filter the 4 nearest texels from each of the 2 
nearest mipmaps.
• This is called trilinear filtering.



23-October-2007 © Copyright Ian D. Romanick 2007

Filtering Modes
OpenGL has a name for each of these:

● GL_NEAREST
● GL_LINEAR
● GL_NEAREST_MIPMAP_NEAREST
● GL_NEAREST_MIPMAP_LINEAR
● GL_LINEAR_MIPMAP_NEAREST
● GL_LINEAR_MIPMAP_LINEAR

We'll discuss how to select the filtering mode in 
a bit...



23-October-2007 © Copyright Ian D. Romanick 2007

References
http://en.wikipedia.org/wiki/Texture_filtering

http://en.wikipedia.org/wiki/Mipmap

http://www.opengl.org/resources/code/samples/redbook/mipmap.c

http://www.graphicshardware.org/previous/www_1998/presentations/kirk/sld022.htm

http://www.sgi.com/products/software/performer/brew/anisotropic.html

http://en.wikipedia.org/wiki/Texture_filtering
http://en.wikipedia.org/wiki/Mipmap
http://www.opengl.org/resources/code/samples/redbook/mipmap.c
http://www.graphicshardware.org/previous/www_1998/presentations/kirk/sld022.htm
http://www.sgi.com/products/software/performer/brew/anisotropic.html


23-October-2007 © Copyright Ian D. Romanick 2007

Creating Textures
Textures are identified by a unique texture 

object ID.
● IDs can be generated by glGenTextures.

• glGenTextures does not allocate memory for the 
texture.

● IDs can also be “pulled from thin air”.
• This is the push model in action!
• An old trick is to use textures for letters in a font.  Name 

the textures after the letters... (GLint)'a', 
(GLint)'b', etc.

• In simple programs with few textures hard-code the 
names to 1, 2, 3, etc.



23-October-2007 © Copyright Ian D. Romanick 2007

Creating Textures (cont.)
Make a texture active with glBindTexture.

● By default texture ID 0 is bound.

● glBindTexture does not allocate memory for the 
texture.

A texture ID is bound to a texture target.
● The target determines what kind of texture (e.g., 

1D, 2D, etc.) it is.

● Each ID can only be associated with one target.



23-October-2007 © Copyright Ian D. Romanick 2007

Creating Textures (cont.)
Texture data is uploaded glTexImage[123]D

● Since the size of the image is set by these 
functions, this is when the memory gets allocated.

● Specified target must match dimensionality of the 
function. (e.g., GL_TEXTURE_2D cannot be passed 
to glTexImage[123]D).

● Specified target must match target of bound texture 
ID.

● Width and height must be powers of 2.
• Restriction relaxed in OpenGL 2.1 or with 
GL_ARB_texture_non_power_of_two.



23-October-2007 © Copyright Ian D. Romanick 2007

Texture Creation Example
glBindTexture(GL_TEXTURE_2D, id);

glTexImage2D(GL_TEXTURE_2D, level, GL_RGB,
             width, height,
             GL_RGB, GL_UNSIGNED_BYTE,
             pointer_to_image_data);



23-October-2007 © Copyright Ian D. Romanick 2007

Updating Texture Data
glTexImage[123]D are expensive because 

they allocate memory.

To update a texture, use 
glTexSubImage[123]D instead.

glBindTexture(GL_TEXTURE_2D, id);
glTexSubImage2D(GL_TEXTURE_2D, level,
             x_offset, y_offset,
             width, height,
             GL_RGB, GL_UNSIGNED_BYTE,
             pointer_to_image_data);



23-October-2007 © Copyright Ian D. Romanick 2007

Texture Completeness
A texture must be “complete” or it will be 

disabled.
● If a mipmap filter mode is selected, the texture must 

be mipmap complete, meaning that ever mipmap 
down to 1x1 must be set.

● Cubic textures must be cubemap complete, 
meaning that all six sides must be set and, if 
necessary, be mipmap complete.
• Cubic textures also must be square, and all sides must 

have the same dimensions.

Not being complete is the cause of 99% of all 
newbie texturing problems.



23-October-2007 © Copyright Ian D. Romanick 2007

Texture Parameters
Set texture object parameters with 
glTexParameter[if] or 
glTexParameter[if]v
● Just like lights!

● Set filter mode, coordinate wrap mode, border 
color, and other parameters this way.

glTexParameteri(GL_TEXTURE_2D,
                GL_TEXTURE_MIN_FILTER,
                GL_NEAREST);



23-October-2007 © Copyright Ian D. Romanick 2007

Texture Wrapping
Texture images only have range [0, 1].

● What happens if the requested texel coordinate is 
outside that range?



23-October-2007 © Copyright Ian D. Romanick 2007

Texture Wrapping
Texture images only have range [0, 1].

● What happens if the requested texel coordinate is 
outside that range?

● It depends on the wrap mode!

Wrap mode is set independently for each 
dimension.

8 possible modes, not all implementations 
support all 8.
● OpenGL 1.5 and 2.0 only require 5.

● Remaining 3 were rejected for inclusion in 2.0.



23-October-2007 © Copyright Ian D. Romanick 2007

Wrap Mode Demo



23-October-2007 © Copyright Ian D. Romanick 2007

Next week...
More texture mapping:

● Texture combiners (part 1 of 3)

● Texture coordinate generation

● Environment mapping

Assignment #3 due.

Assignment #4 assigned.

Maybe another quiz? >:)



23-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily 

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States, 
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or 
service marks of others.


